您当前的位置:首页 > 九章算术全文
《九章算术》:是中国古代的数学专著,是“算经十书”中最重要的一部。
《九章算术》 / 张苍、耿寿昌 著
《九章算术》在线阅读

九章算术

作者:张苍、耿寿昌

年代:西汉

作品简介:《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。 《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(cuī)分、少广、商功、均输、盈不足、方程及勾股。共九章如下所示。原作有插图,今传本已只剩下正文了。 《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。其影响之深,以致以后中国数学着作大体采取两种形式:或为之作注,或仿其体例着书;甚至西算传入中国之后,人们着书立说时还常常把包括西算在内的数学知识纳入九章的框架。 然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。魏景元四年(263年),刘徽给《九章算术》作注,才大大弥补了这个缺陷。《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显着特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲……
《太玄经》 《无量寿经》 《六韬》 《抱朴子》 《神农本草经》 《水经注》 《绿野仙踪》 《四十二章经》 《反经》 《尔雅》 《子不语》 《颜氏家训》 《长短经》 《三侠五义》 《东周列国志》 《大唐西域记》 《茶经》 《三都赋》 《淮南子》 《素书》 《孝经》 《商君书》 《老残游记》 《太平广记》 《九章算术》 《东京梦华录》 《官场现形记》 《酉阳杂俎》 《镜花缘》 《警世通言》 《荡寇志》 《洗冤集录》 《孔子家语》 《醒世恒言》 《元史》 《孽海花》 《薛刚反唐》 《初刻拍案惊奇》 《儿女英雄传》 《雍正剑侠图》 《列女传》 《越绝书》 《吴越春秋》 《人物志》 《大戴礼记》 《小五义》 《封神演义》 《搜神记》 《聊斋志异》 《小八义》 《说岳全传》 《剪灯新话》 《二刻拍案惊奇》 《隋唐演义》 《东游记》 《济公全传》 《狄公案 》 《花月痕》 《贞观政要》 《十二楼》 《穆天子传》 《朝野佥载》 《神仙传》 《博物志》 《武林旧事》 《春秋配》 《海上花列传》 《孙膑兵法》 《龙文鞭影》 《千金要方》 《濒湖脉学》 《奇经八脉考》 《洛阳伽蓝记》 《佛国记》 《三遂平妖传》 《明季北略》 《三朝北盟会编》 《浮生六记》 《唐才子传》 《明儒学案》 《高士传》

《九章算术》全文

昔在庖犠氏始画八卦,以通神明之德,以类万物之情,作九九之数,以合六 爻之变。暨于黄帝神而化之,引而伸之,于是建历纪,协律吕,用稽道原,然后 两仪四象精微之气可得而效焉。记称隶首作数,其详未之闻也。按周公制礼而有 九数,九数之流,则《九章》是矣。往者暴秦焚书,经术散坏。自时厥后,汉北 平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故 校其目则与古或异,而所论者多近语也。徽幼习 《九章》,长再详览。观陰陽之 割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作 注。事类相推,各有攸归,故枝条虽分而同本榦知,发其一端而已。又所…
  方田(以御田畴界域) 今有田广十五步,从十六步。问为田几何?答曰:一亩。   又有田广十二步,从十四步。问为田几何?答曰:一百六十八步。   〔图:从十四,广十二。〕 方田术曰:广从步数相乘得积步。   〔此积谓田幂。凡广从相乘谓之幂。   淳风等按:经云广从相乘得积步,注云广从相乘谓之幂。观斯注意,积幂义 同。以理推之,固当不尔。何则?幂是方面单布之名,积乃众数聚居之称。循名 责实,二者全殊。虽欲同之,窃恐不可。今以凡言幂者据广从之一方;其言积者 举众步之都数。经云相乘得积步,即是都数之明文。注云谓之为幂,全乖积步之 本意。此注前云积为田幂,于理得通。…
  粟米(以御交 质变易) 粟米之法 〔凡此诸率相与大通,其时相求,各如本率。可约者约之。别术然也。〕 粟率五十大抃五十四稻六十 粝米三十粝饭七十五豉六十三 粺米二十七粺饭五十四飧九十 米二十四饭四十八熟菽一百三半 御米二十一御饭四十二糵一百七十五 小<麦啇>十三半菽荅麻麦各四十五 今有 〔此都术也。凡九数以为篇名,可以广施诸率。所谓告往而知来,举一隅而 三隅反者也。诚能分诡数之纷杂,通彼此之否塞,因物成率,审辨名分,平其偏 颇,齐其参差,则终无不归于此术也。〕 术曰:以所有数乘所求率为实。以所有率为法。   〔少者多之始,一者数之母,故为率者必等之于一。据粟率五、粝…
  衰分(以御贵贱禀税) 衰分 〔衰分,差也。〕 术曰:各置列衰; 〔列衰,相与率也。重叠,则可约。〕 副并为法,以所分乘未并者,各自为实。实如法而一。   〔法集而衰别。数,本一也。今以所分乘上别,以下集除之,一乘一除,适 足相消,故所分犹存,且各应率而别也。于今有术,列衰各为所求率,副并为所 有率,所分为所有数。又以经分言之,假令甲家三人,乙家二人,丙家一人,并 六人,共分十二,为人得二也。欲复作逐家者,则当列置人数,以一人所得乘之。   今此术先乘而后除也。〕 不满法者,以法命之。   今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿。欲以爵次分之, …
  少广(以御积幂方圆) 少广 〔淳风等按:一亩之田,广一步,长二百四十步。今欲截取其从少,以益其 广,故曰少广。〕 术曰:置全步及分母子,以最下分母遍乘诸分子及全步, 〔淳风等按:以分母乘全步者,通其分也;以母乘子者,齐其子也。〕 各以其母除其子,置之于左,命通分者,又以分母遍乘诸分子及已通者,皆 通而同之。并之为法。   〔淳风等按:诸子悉通,故可并之为法。亦宜用合分术,列数尤多,若用乘 则算数至繁,故别制此术,从省约。〕 置所求步数,以全步积分乘之为实。   〔此以田广为法,以亩积步为实。法有分者,当同其母,齐其子,以同乘法 实,而并齐于法。今以分母乘全步…
  商功(以御功程积实) 今有穿地,积一万尺。问为坚、壤各几何?答曰:为坚七千五百尺;为壤一 万二千五百尺。   术曰:穿地四为壤五, 〔壤谓息土。〕 为坚三, 〔坚谓筑土。〕 为墟四。   〔墟谓穿坑。此皆其常率。〕 以穿地求壤,五之;求坚,三之;皆四而一。   〔今有术也。〕 以壤求穿,四之;求坚,三之;皆五而一。以坚求穿,四之;求壤,五之; 皆三而一。   〔淳风等按:此术并今有之义也。重张穿地积一万尺,为所有数,坚率三、 壤率五各为所求率,穿率四为所有率,而今有之,即得。〕 城、垣、堤、沟、堑、渠皆同术。   术曰:并上下广而半之, 〔损广补狭。〕 以高若深…
  均输(以御远近劳费) 今有均输粟,甲县一万户,行道八日;乙县九千五百户,行道十日;丙县一 万二千三百五十户,行道十三日;丁县一万二千二百户,行道二十日,各到输所。   凡四县赋当输二十五万斛,用车一万乘。欲以道里远近、户数多少衰出之,问粟、 车各几何?答曰:甲县粟八万三千一百斛,车三千三百二十四乘。乙县粟六万三 千一百七十五斛,车二千五百二十七乘。丙县粟六万三千一百七十五斛,车二千 五百二十七乘。丁县粟四万五百五十斛,车一千六百二十二乘。   术曰:令县户数各如其本行道日数而一,以为衰。   〔按:此均输,犹均运也。令户率出车,以行道日数为均,发粟为输。…
  盈不足(以御隐杂互见) 今有共买物,人出八,盈三;人出七,不足四。问人数、物价各几何?答曰: 七人。物价五十三。   今有共买鸡,人出九,盈一十一;人出六,不足十六。问人数、鸡价各几何? 答曰:九人。鸡价七十。   今有共买琎,人出半,盈四;人出少半,不足三。问人数、琎价各几何?答 曰:四十二人。琎价十七。   〔注云“若两设有分者,齐其子,同其母”,此问两设俱见零分,故齐其子, 同其母。又云“令下维乘上。讫,以同约之”,不可约,故以乘,同之。〕 今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三 十。问家数、牛价各几何?答曰:一百二十六家…
  方程(以御错糅正负) 今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉, 下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、 中、下禾实一秉各几何?答曰:上禾一秉九斗四分斗之一。中禾一秉四斗四分斗 之一。下禾一秉二斗四分斗之三。   方程 〔程,课程也。群物总杂,各列有数,总言其实。令每行为率。二物者再程, 三物者三程,皆如物数程之。并列为行,故谓之方程。行之左右无所同存,且为 有所据而言耳。此都术也,以空言难晓,故特系之禾以决之。又列中、左行如右 行也。〕 术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗于右方。中、左禾…
  句股(以御高深广远) 今有句三尺,股四尺,问为弦几何?答曰:五尺。   今有弦五尺,句三尺,问为股几何?答曰:四尺。   今有股四尺,弦五尺,问为句几何?答曰:三尺。   句股 〔短面曰句,长面曰股,相与结角曰弦。句短其股,股短其弦。将以施于诸 率,故先具此术以见其源也。〕 术曰:句、股各自乘,并,而开方除之,即弦。   〔句自乘为朱方,股自乘为青方。令出入相补,各从其类,因就其余不移动 也,合成弦方之幂。开方除之,即弦也。〕 又,股自乘,以减弦自乘。其余,开方除之,即句。   〔淳风等按:此术以句、股幂合成弦幂。句方于内,则句短于股。令股自乘, 以减弦自…

《九章算术》资料

《九章算术》中的数学成就是多方面的: (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较 早的。“盈不足”的算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的。 《九章算术》中有比较完整的分数计算方法,包括四则运算,通分、约分、化带分数为假分数(我国古代称为通分内子,“内”读为纳)等等。其步骤与方法大体与现代的雷同。 分数加减运算,《九章算术》已明确提出先通分,使两分数的分母相同,然后进行…
《九章算术》对后世历史的影响 《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显着特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代…
《九章算术》这本书主要特点 《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。其影响之深,以致以后中国数学着作大体采取两种形式:或为之作注,或仿其体例着书;甚至西算传入中国之后,人们着书立说时还常常把包括西算在内的数学知识纳入九章的框架。 然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。魏景元四年(263年),刘徽给《九章算术》作注,才大大弥补了这个缺陷。 刘徽是中国数学家之一。他的生平知之甚少。据考证,他是山东邹平人。刘徽定义了若干数学概念,全面论…
《九章算术》主要内容 《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(cuī)分、少广、商功、均输、盈不足、方程及勾股。共九章如下所示。原作有插图,今传本已只剩下正文了。 《九章算术》共收有246个数学问题,分为九章。它们的主要内容分别是: 第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这…
《九章算术》作品背景 《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种。魏晋时刘徽为《九章算术》作注时说:“周公制礼而有九数,九数之流则《九章》是矣”,又说“汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补,故校其目则与古或异,而所论多近语也”。根据研究,西汉的张苍、耿寿昌曾经做过增补。最后成书最迟在东汉前期,但是其基本内容在西汉后期已经基本定型。 《汉书艺文志》(班固根据刘歆《七略》写成者)中着录的数学书仅有《许商算术》、《杜忠算术》两种,并无《九章算术》,可见《九章算术》的出现要晚于《七…

九章算术文学网提示:

① 《九章算术》所有章节均由网友上传,仅代表发布者个人行为,与本站立场无关!

② 为净化网络环境,如果您发现《九章算术》与现有法律有抵触之处,请向我们举报,我们将及时更正,您的热心是对本站最大的支持!

③ 如果您发现作品九章算术有错误内容,请发短信通知我们,我们会立即处理!

④ 支持作者请到各大书店或网站购买阅读。如果侵犯了您的权益,请与本站联系,我们将立刻删除相关作品。